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Charged-dust distributions in general relativity 

A. K. RAYCHAUDHURI? and U. K. DE$ 
t Physics Department, Presidency College, Calcutta, India 
2 Physics Department, Jadavpur University, Calcutta, India 
M S .  receiced 1 7 t h  November 1969,  in revised form 9 t h  January 1970 

Abstract. The paper presents some simple theorems and relations for charged- 
dust distributions in general relati\-ity. 

1. Introduction 
In  recent years, the statics and dynamics of charged-dust distributions in general 

relativity have attracted considerable attention (Bonnor 1965, De 1968, De and 
Raychaudhuri 1968, Faulkes 1969, Hamoui 1969, Som and Raychaudhuri 1968 a). 
While some interesting results have emerged, many points remain obscure. In  fact, 
an apparently simple question as to the fate of a collapsing charged-dust distribution 
for different values of c / p  (where E is the charge density and p is the mass density) and 
the circumstances under which it may bounce remains largely unanswered. 

With a view to throw some light on these problems, the present paper makes an 
attempt to obtain simple relations and theorems from the Einstein-Maxwell equations 
for a charged dust without imposing any special symmetry restrictions. Amongst the 
results that have been obtained the following seem to be of interest: 

(i) A formula for the charge density in terms of the electric and magnetic field 
vectors and the acceleration and vorticity of the dust. 

(ii) A theorem that, if the magnetic field vanishes, the electric flux through any 
element of area bounded by particles of the dust is a constant of motion. 

(iii) The  result that, in the absence of magnetic field, the vorticity and electric 
field are orthogonal. 

(iv) For an irrotational motion in the absence of magnetic fields, the electric field 
vector is orthogonal to the surfaces defined by constant values of c / p .  

(v) A relation between the characteristics of motion (vorticity, acceleration, 
expansion and shear) and the matter density, the electromagnetic energy density and 
the Poynting vector (equations (26) and (27)) .  

(vi) For a dust in irrotational motion in absence of magnetic fields, the expansion 
(or contraction) cannot be shear-free. This is a generalization of a result obtained 
earlier De  (1968). 

(vii) Rainich-like algebraic relations between the R,, and a theorem that a given 
g,, field determines the matter density p and the dust velocity vector uniquely and the 
electromagnetic field tensor up to a duality rotation. 

2. The Einstein-Maxwell equations and a proof of the results (i)-(iv) 

in the form 
The  Einstein-Maxwell equations for a charged-dust distribution may be written 

RUV = - 8+7Lv-Pk?uv)  (1) 
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where the symbols have their usual significance. We now have (Lichnerowicz 1967) 

1 1 
4%- 4%- 

- - (E,Ey + H,HV) - - (v,SV + v,S,) (4) 

where the Poynting vector S is defined as 

The  current J can be split up into a convection and a conduction part 

J" = EV" -+ uE' 

where a is the conductivity of the dust. One obtains from equations (3), ( 5 )  and (7) 
(7) 

(8) ~ T E  = E";" +E%, - ~ H , w "  

where uU and da are the vorticity and acceleration vectors respectively: 

The relation (8) is the one referred to in (i) in the introduction (cf. Som and Raychaud- 
huri 1968 b). Also with U = 0 we have, taking the divergence of equation (1) and 
using equations (3) and (4), 

E 
6, = -E ,  

P 

so that equation (8) may also be written as 

E 
4 7 ~ ~  = E",, - - E' - ~ H , W " .  ( 12) 

P 

In  the case where the electric field vanishes (force-free geodetic motion) the above 
gives 

-2HUwa. (13)  
Examples of the above relation occur in the solutions found by Som and Raychaud- 
huri (1968 a) and Ellis and Stewart (1968). 

If the conductivity of the dust is negligible, then from equations (7), ( 5 )  and (3), we 
obtain after a little reduction 

2Eu4"B - 4OEB - va(Efiia - E";@) - 7'*?"fi57j~.~,H, - ~ a ' L a ~ ~ ~ H 5 ; u  = 0 (14) 

(15) 
0 = 71":". (16) 

where the shear +aB and expansion 0 are defined by 

+up = +(vu;B + '8;cr) - - VuVB)O - i ( v u d 8  + 7juvg) 
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The other half of Maxwell's equations may be similarly split up : 

H'Vu + Ha;" + 2E,w" = 0 (17) 
2H"4," - gOH' - v"(H";, - H,;") + qAauuV~,~,Eo + rj"uAu~).Eu;c! = 0 .  (18) 

Equation (14) may be integrated in the case where the magnetic field vanishes. 
Let us take a comoving coordinate system so that vu = Sou and the line element has 
the form 

d 2  = dxo2 + 2goi dxo dxi +gtk dxi dxk (19) 
where we have adopted the convention that the greek indices run from 0 to 3 and the 
latin indices from 1 to 3. Equation (14) now gives, with H = 0, 

where 

Equation (21) yields on integration 

EiG3 = Ai(%')). (22) 
Equation (22) leads to the result that the magnitude of the electric field vector is given 
by 

hikAiAk -E2 = ___ 
G6 

so that the magnitude of the field varies inversely as the area of an element of fluid 
orthogonal to the direction of the field or, in other words, the flux through an area 
bounded by the particles of the fluid remains constant. 

Again equations (17) and (18) yield for H = 0 

Eioi = 0 (23) 

Equation (24) yields, after a little manipulation using equation (23), 

Equation (25) leads to three interesting special cases : 

satisfied. 

varies inversely as the area of an element orthogonal to its direction. 

that the electric field is orthogonal to the surfaces defined by constant E / P .  

( U )  The motion is irrotational and E / P  is constant. Equation (25) is trivially 

(b)  E / P  is constant but vorticity exists. Equation (25) gives the result that vorticity 

(c) The motion is irrotational but ~ / p  is not constant. Equation (25) now shows 

3. The expansion equations 

energy density and the Poynting vector. 
We now present two relations between the characteristics of the motion and the 

A5 
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From the identity 
z'';~, - z'';,~ Rocl~' 

we obtain, using equations (1) and (4), 

E 82 + H 2  = 2 - H"w, - 2(+2 - w2) - - - 0,,7J~ - 
P 3 

4. The impossibility of isotropic expansion 
We shall consider a charged dust in irrotational motion and shall assume that the 

field is purely electric, i.e. qufivaFUvz*, = 0. We shall show that under these circum- 
stances the expansion cannot be shear-free. 

Now, for an irrotational motion the velocity vector is hypersurface orthogonal and 
we may introduce a coordinate system in which the world lines of the dust particles 
will be the t lines and the orthogonal hypersurfaces the three spaces. The  line 
element is now of the form 

dX2 = goo dt2 +hi, dx' dXk. (28) 
With the above line element we obtain from equation (27), for a shear-free expansion 
with vanishing Poynting vector, 

0 = x ( t )  (29 ) 

The condition = 0 yields 

with 

Also, equation (11) gives 

h i k  = G'(x', t)$ik(X') 

det ]$ikl = 1. 

where f i  = ( E / p ) $ i k A k  and is a function of the spatial coordinates alone. The  
consistency of equation (33) would require 

yik'EiEk,, = 0 Or qilClfifk,l = 0. (34) 

G = X+ YT1 (35) 

Combining equations (30) and (33) we obtain 

where X and Y are functions of the spatial coordinates alone having the relation 

fi 
Y 

and TI  is a function of t alone. If we now substitute from equations (31) and (35) in 
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where 
4 2  b X 
3 '  

T H = - + T  
3T,' Y I' 

4 -  T - _ _  3 -  
Tl TZ = -, 
CI 

B = E 2  1-- H4. ( ;:I 
Thus A and B are functions of the spatial coordinates alone. It is not difficult to 

see that equation (37) leads to the condition that either TI and T2 are constants or 
that E vanishes, i.e. the electric field and along with it the charge density would 
vanish if the spatial expansion were shear-free and non-vanishing. 

5. The algebraic relation between the R,, 
As is well known, Rainich (1925) and later Misner and Wheeler (1957) gave some 

relations between the RNV that are necessary and sufficient for the R,, to represent 
a pure electromagnetic field. I n  our case there will be similar relations but somewhat 
modified owing to the presence of the dust field. We may write from equations (1) 
and (2)  

8, v R, v + W P V , V ? J  - 3pgu ,) 

= 2(FuaFva - &,,,F,,FU') (38) 
and hence the Rainich algebraic relations are 

(41) 1 R = svp > 0.  
R,BR""- RR", +BRa6',+ RR,BV"C" + RR',v"v~~ . 

= &G",(R,,RUv + ~ R R , , V ~ V ~ )  

Besides the RbV the above relations involve the velocity vector U@. Let us investigate 
whether a given R,, satisfying equation (41) determines p ,  vu uniquely. In  that case 
the electromagnetic field tensor would be determined up to a duality rotation. I n  
view of equation (41) p is determined uniquely. If possible, let up, u' be two time-like 
unit vectors satisfying equation (41) with vu # U,. Then we would have 

R,Bv"v' + R a c r ~ " v ~  = R,BuV + R""u%~. (42) 
If we now take a locally Lorentz frame such that vu = aOu and U, has only the compo- 
nents uo and u1 non-vanishing, then, from equation (42) with ,O = U = 0, we have 

Roo( 1 - uo2) = R , , U ~ U ~  I 

Also f o r p  = 1, U = 0 
(43) 

0 = Rl,~il~io - R o o ~ o ~ i l .  (44) 
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Equation (44) gives, in view of equations (2) and (4)) 

which contradicts the physical requirement p > 0. The  case p = 0 is already known 
to lead to unique values of F,, up to a duality rotation. 

We shall not attempt here to write out differential relations with the R,, to replace 
the Maxwell equations in the manner done in the already unified theory. Such a 
replacement seems possible but the equations would be so complicated as to be 
of hardly any interest for the present discussion. 
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